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Introduction and context

Context: Coupling mechanical and stochastic models

Our objective: the reliability

aims to evaluate the performance of mechanical systems under data uncertainty
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Introduction and context

Outlook of the work

Objective

“to make efficient” the coupled approach for application to industrial problems

Implicit performance function
Complex behavior

& large number of variables

Ways:

To decrease the number of calls to the mechanical model

To improve calculation convergence

The objective is to get the maximum of information
with a minimum of mechanical model evaluations

Limit-state substitution and statistical learning
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A classification problem
Binary classification in linearly separable case

A training set: labeled points
X1, ...,Xn defined in a domain D

2 classes (binary classification):
in reliability, the failure domain
and the safety domain

Objective: to find a hyperplane
which is the optimal data
classifier (linearly separable
classes)

G(X ) = 〈$,X 〉+ b = 0

The optimal classifier is obtained by maximizing the margin
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The non linear case

For non linear cases, a space transformation is applied:

Projection into the
feature space

A non linear projector Φ transforms the starting space towards a space of
higher size: the feature space

The non linear classification in the standard space becomes a linear problem
after the projection

The Kernel Trick
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The optimization problem
How to maximize the margin ?

After mathematical manipulations, maximizing the margin corresponds to the
minimization of the norm of $, the optimization problem is written in the form:

min
‖$‖2

2
subject to ci (〈$,Xi 〉+ b) ≥ 1, i = 1, ..., n

The Lagragian formulation:

L($, b, α) =
‖$‖2

2
−

n∑
i=1

αi [ci (〈$,Xi 〉+ b)− 1]

The Karush-Kuhn-Tucker conditions:

∂L($, b, α)

∂b
= 0 =

n∑
i=1

αi ci and
∂L($, b, α)

∂$
= 0 = $ −

n∑
i=1

αi ci Xi

Constraints of right classification

Convex quadratic function
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The optimization problem

The nonnull αi correspond to realizations
on the margin, they are called the support
vectors

The separation can be defined only starting
from these realizations:

$ =
S∑

j=1

αj Cj Xj

where S is the number of supports vectors.

Then we obtain the main properties for our use of SVM:

only points in the margin are useful to affine the separation
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The SMART method
SVM, Classification and Monte-Carlo

[ J.E.Hurtado, Structural reliability - Statistical Learning Perspectives, 2004, Springer editions ]

[ F.Deheeger and M.Lemaire, Reliability Analysis by Support Vector Machine Classification,
2006, ASRANet Colloquium Glasgow ]

SMART

means: Support-vector Margin Algorithm for Reliability esTimation

is specially design for the determination of the limit between failure and
safety domains for the estimation of failure probability

The idea: analyze Monte-Carlo simulation like a classification problem

The principle is to classify all points of a Monte-Carlo simulation by calling the
limit-state function for a minimum of realizations.

F. Deheeger & M. Lemaire - 10th ICASP SVM for Efficient Subset: 2SMART method 10 / 28



SVM & Monte-Carlo
SVM & Subsets

Validation

SVM Theory
SMART method
Some remarks

SMART steps

1. Work in standard space
Transformation of basic variables into the standard
space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step
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Some remarks

SMART steps

1. Work in standard space

2. Design of experiment
The first plan is designed by latin square sampling (or
from the expert knowledge)

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step
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SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier
Evaluation of the limit-state for the first points, and
optimization of the first classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step
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Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population
Generation of an uniform distribution in a hypersphere
of radius βmax

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step
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SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection
Selection of margin points from the work population,
and compression by clustering, as to keep a few optimal
points

6. A new classifier

7. The approximation step

8. The precision step
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SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier
Evaluation of the limit-state function for the selected
points and optimization of a new classifier

7. The approximation step

8. The precision step
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SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step
Back to step 5 until an empty margin, or a maximum
number of learning iterations

8. The precision step
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Validation

SVM Theory
SMART method
Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step
Back to step 4 with a Gaussian distribution of the size
of the Monte-Carlo simulation as work population

F. Deheeger & M. Lemaire - 10th ICASP SVM for Efficient Subset: 2SMART method 11 / 28



SVM & Monte-Carlo
SVM & Subsets

Validation

SVM Theory
SMART method
Some remarks

SMART: key points of the learning process

First design plan

A compromise between number of learning points and space exploration: latin square
design

Multi-scale approach

3 steps are defined for the learning process:

1 the positioning step: the work population is uniform and sparse

2 the stabilization step: the work population is still uniform but denser

3 the precision step: the work population is the Monte-Carlo simulation

Margin points selection

New points added to the database are selected from work population in the margin:

clustered points: a good dispersion along the margin

instable points: points whose class are changing between iterations

closest points: points close to the analytical separation

F. Deheeger & M. Lemaire - 10th ICASP SVM for Efficient Subset: 2SMART method 12 / 28



SVM & Monte-Carlo
SVM & Subsets

Validation

SVM Theory
SMART method
Some remarks

SMART: some limits

Dependence on the probability objective

The size of the Monte-Carlo population depends on the failure probability
that is not a priori define

A crucial 1st step: the size of the first design plan depends on the failure
probability objective because the algorithm needs failure points to start

So: need a less dependent approach...

subset simulation
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Subset simulation - The idea

[ S.K.Au and J.L.Beck, Estimation of small failure probabilities in high dimensions
by subset simulation, 2001, Prob.Eng.Mech. ]

The desired probability P(Fm) = P(F ) is written by using the conditional
probability theory:

Pf = P(F )

= P(F | Fm−1)P(Fm−1)

= ...

= P(F1)
m∏

i=2

P(Fi | Fi−1)

Pf is evaluated by estimating all factors.

Successive thresholds are automatically selected such that the evaluated
conditional probabilities are about α = 10%:

each factor can be evaluated efficiently by simulation
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An illustrative example

Subset simulation steps
Subset first step

The first probability P(F1) is evaluated by crude
Monte-Carlo

N simulations are generated

the first threshold y1 is defined as to find P(F1) ≈ α = 0.1

Subset second step

The second probability P(F2) is evaluated by
conditional simulations

N conditional simulations are generated by Markov Chains
from germs: points of the preceding step in F1

the second threshold y2 is defined as to find P(F2) ≈ α

...

Subset last step

The last probability P(Fm) is evaluated by
conditional simulations

N conditional simulations are generated by Markov Chains

the last threshold ym = 0 is reached after m steps
(m depends on Pf value)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1x

2x

limit-state

1st threshold
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2SMART
An illustrative example

2SMART - Idea

Objective: to cumulate advantages of both approaches, SMART and
Subsets simulations

Idea: to use the learning strategy of SMART for the limit defined at
each step of the subset

Strategy: At each steps of subset, 2 phases:

1 determine the threshold: by direct simulation (100 points), or
regression (25 points) and simulation

2 using SMART strategy with adapted work populations (conditional
sampling by Markov Chains) for the evaluation of the failure
probability at each step
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A short illustrative example

G(X ) = min



3 + 0.1 (X1 − X2)2 −
X1 + X2√

2

3 + 0.1 (X1 − X2)2 +
X1 + X2√

2

X1 − X2 + 3.5
√

2

X2 − X1 + 3.5
√

2

X1,2 are standard Gauss variables

MC FORM SS(AB) SS(AB) 2SMART

N calls 106 12 3000 30000 350
Pf (10−3) 2.22 1.34 2.35 2.44 2.21

β 2.85 3.00 2.83 2.81 2.85
Cov 0.02 − 0.23 0.06 0.01

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

X
1

X
2

G(X)=0 
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Subset simulations
2SMART
An illustrative example

2SMART - Steps illustration

First subset step

Second subset step
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A non smooth performance function
A non linear oscillator

Limit-state function definition:

G(X ) = Fs − 3ks

√√√√π
S0

4ζsω3
s

ζaζs

ζpζs (4ζ2
a + θ2) + γζ2

a

(ζpω3
p + ζsω3

s )ωp

4ζaω4
a

with:

ωp =

√
kp

mp

ωs =

√
ks

ms

γ =
ms

mp

ωa =
1

2
(ωp + ωs )

ζa =
1

2
(ζp + ζs )

θ =
1

ωa
(ωp − ωs )

Random variables definition:

Random variables pdf Mean cov
mp Lognormal 1.5 10%
ms Lognormal 0.01 10%
kp Lognormal 1 20%
ks Lognormal 0.01 20%
ζp Lognormal 0.05 40%
ζs Lognormal 0.02 50%
Fs Lognormal 15 10%
S0 Lognormal 100 10%
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A non smooth performance function
A non linear oscillator

Results from various methods and various threshold:

FORM MC SS(AB) 2SMART
(100 runs) (500 runs) (50 runs)

(3.105 sim/step) (300 sim/step)
Pf Pf Pf Pf

(N calls) (N calls / Cov %) (N calls / Cov %) (N calls / Cov %)

9.70 · 10−2 3.71 · 10−2 3.71 · 10−2 3.69 · 10−2

(234) (27000 / 3.2) ( ≈ 2× 3.105 / 3.2) (≈ 2× 300 / 2.1)

2.19 · 10−2 4.79 · 10−3 4.78 · 10−3 4.78 · 10−3

(1179) (200000 / 2.9) (≈ 3× 3.105 / 1.2) (≈ 3× 300 / 3.4)

2.72 · 10−3 4.22 · 10−4 4.23 · 10−4 4.18 · 10−4

(3099) (2300000 / 3.1) (≈ 4× 3.105 / 1.9) (≈ 4× 300 / 5.6)

do not conv. - 4.42 · 10−5 4.42 · 10−5

(≈ 5× 3.105 / 2.5) (≈ 5× 300 / 6.8)

do not conv. - 3.78 · 10−7 3.66 · 10−7

(≈ 7× 3.105 / 4.0) (≈ 7× 300 / 9.6)
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Influence of the number of random variables
[ R.Rackwitz, Reliability analysis - a review and some perspectives, 2001, Structural Safety ]

Test case evaluated for 3 dimensions: 40, 100 and 250

Dimension 40 100 250

Pf (10−3) 1.98 1.73 1.59

SS(AB) 2.4% 2.3% 2.4%

105 calls by step 105 calls by step 105 calls by step

SS(AB) 22% 17% 11%
1243 calls by step 2012 calls by step 3569 calls by step

2SMART 2.8% 2.2% 2.6%
1243 calls by step 2012 calls by step 3569 calls by step

0.99 1.01 1.01

Coefficient of variation and error values are calculated on the basis of 20 runs.

Some remarks

There is no biais on results obtained by the 2SMART method, even in
large dimension.

Coefficients of variation obtained by the 2SMART approach using about
2000 limit-state calls require 105 limit-state calls by subset simulation.
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A random field application
8 holes plate with random Young modulus

[ P-L.Liu and A. Der Kiureghian, Optimization algorithms for structural reliability analysis,
1986, Tech. Report, University of California, Berkeley ]

[ B.Sudret and A. Der Kiureghian, Stochastic Finite Element Methods and Reliability -
A State-of-the-Art Report, 2000, Tech. Report, University of California, Berkeley ]

The limit-state definition:

G(X ) = σlimit −max(σVonMises )

Graphical representation of the structure:

Random variables:

20 random variables are used to defined the Young modulus of the plate
by the EOLE method.

Difficulties are due to multiple design points, dimension and coupled
procedure (FE model)
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A random field application
A pecision about random variables

Graphical representation of the signification of each random variable into
the Young modulus of the plate:
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A non smooth example
The dimension influence
A random field application

A random field application
Reliability results

Some probable failure points

A convergence index

FORM Multi-FORM SS(AB) SS(AB) 2SMART

N calls 200 1000 2000 20000 600
Pf (10−2) 0.37 0.37 1.44 1.43 1.38

β 2.67 2.67 2.18 2.19 2.21
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Conclusion

Important points

Classification allows a serious reduction of limit-state calls.

SVM is flexible respect to limit-state form, even for system approach...

Adaptive approach: the number of constructed database points is more or
less flexible...

Conclusion

We dispose, with 2SMART, of a tool for solving applications involving
significant models of industrials products.
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