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Introduction and context

Context: Coupling mechanical and stochastic models

Our objective: the reliability
aims to evaluate the performance of mechanical systems under data uncertainty

plociash Spue Performance functlon
@ Geometry
@ Loads ; Reliability analysis

@ Materials Mechanical
and Threshold
Mechanical model Stochastic model P;
l!‘

/ P; = Prob {G(X) < 0}
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Introduction and context

Outlook of the work

Objective
“to make efficient” the coupled approach for application to industrial problems

» rel

Complex behavior
& large number of variables

Implicit performance function

Ways:
@ To decrease the number of calls to the mechanical model

@ To improve calculation convergence

The objective is to get the maximum of information
with a minimum of mechanical model evaluations

T~ — — — -
\ S —- |L|m|t-state substitution and statistical Iearnlngl
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Introduction and context
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SVM & Monte-Carlo SVM Theory
SMART method
Some remarks
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SVM & Monte-Carlo SVM Theory
SMART method
Some remarks

A classification problem

Binary classification in linearly separable case

@ A training set: labeled points .
X1, ... X, defined in a domain D ol e/ 08 .

@ 2 classes (binary classification): N
in reliability, the failure domain
and the safety domain

Failure

@ Objective: to find a hyperplane > (e, X)+b=—1

which is the optimal data . o S e x)re=0
classifier (linearly separable ¢ (w, X)+b=+1
classes)

G(X) = <w7 X> +b=0 ®Safepoint O Failure point 4 Support Vector
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SVM & Monte-Carlo

A classification problem

SVM Theory
SMART method
Some remarks

Binary classification in linearly separable case

@ A training set: labeled points

Xi, ..., X,, defined in a domain D %, M,.,,gi:/ e

@ 2 classes (binary classification): 9 Faiture
in reliability, the failure domain .
and the safety domain

L]

@ Objective: to find a hyperplane > (e, X)+b=—1
which is the optimal data . o | ST e x)re=0
classifier (linearly separable ¢ \w, Xj+b=rt1
classes) .

G(X) = <w7 X> + b=0 @ Safe point O Failure point / <k Support Vector !
The optimal classifier is obtained by maximizing the margin J
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

The non linear case

For non linear cases, a space transformation is applied:

Projection into the
feature space

A non linear projector ® transforms the starting space towards a space of
higher size: the feature space

The non linear classification in the standard space becomes a linear problem
after the projection

- B~
\ i e | The Kernel Trick |
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SVM & Monte-Carlo SVM Theory
SMART method
Some remarks

The optimization problem

How to maximize the margin ?

After mathematical manipulations, maximizing the margin corresponds to the
minimization of the norm of w, the optimization problem is written in the form:

[l

min - subject to ¢i({w, Xi) + b) > 1, i=1,....n

. . Constraints of right classification
The Lagragian formulation:

L(w, b,a) = ”w” Za,[c, Xi) + b) — 1]

The Karush-Kuhn-Tucker conditions: ~ Convex quadratic function

OL(w, b,a) _ OL(w, b,a) - :
b =0= Za,c, and p =0=w— Zloz,c, ;
/' 1
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

The optimization problem

The nonnull a; correspond to realizations S
on the margin, they are called the support dome :
vectors

The separation can be defined only starting
from these realizations:

Classifier
x

Support
Vectors

S
@ =Y aGX
j=1

Safety
oy x X domain

where S is the number of supports vectors. %
Then we obtain the main properties for our use of SVM:
only points in the margin are useful to affine the separation J
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

The SMART method

SVM, Classification and Monte-Carlo

[ J.E.Hurtado, Structural reliability - Statistical Learning Perspectives, 2004, Springer editions |

[ F.Deheeger and M.Lemaire, Reliability Analysis by Support Vector Machine Classification,
2006, ASRANet Colloquium Glasgow |

SMART

@ means: Support-vector Margin Algorithm for Reliability esTimation

@ s specially design for the determination of the limit between failure and
safety domains for the estimation of failure probability

The idea: analyze Monte-Carlo simulation like a classification problem

The principle is to classify all points of a Monte-Carlo simulation by calling the
limit-state function for a minimum of realizations.

/s
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space
Transformation of basic variables into the standard
space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

—\' 8. The precision step
)\

. O O O O O GO G-
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment
The first plan is designed by latin square sampling (or
from the expert knowledge)

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step

e 5= 5 5 0 A N A
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier
Evaluation of the limit-state for the first points, and
optimization of the first classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

" O O O O Gy S O

8. The precision step
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population
Generation of an uniform distribution in a hypersphere
of radius Bmax

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step

s O O O G v O O
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

Selection of margin points from the work population,
and compression by clustering, as to keep a few optimal
points

6. A new classifier

7. The approximation step

8. The precision step

e O O G O O
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier
Evaluation of the limit-state function for the selected
points and optimization of a new classifier

7. The approximation step

8. The precision step

e’ O Gy QY S & O O
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step
Back to step 5 until an empty margin, or a maximum
number of learning iterations

8. The precision step

s G O O O O O O
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART steps

1. Work in standard space

2. Design of experiment

3. First classifier

4. Generation of the work population

5. Learning points selection

6. A new classifier

7. The approximation step

8. The precision step
Back to step 4 with a Gaussian distribution of the size
of the Monte-Carlo simulation as work population

" O & O O O S S
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART: key points of the learning process

First design plan

A compromise between number of learning points and space exploration: latin square
design

v

Multi-scale approach

3 steps are defined for the learning process:

@ the positioning step: the work population is uniform and sparse
@ the stabilization step: the work population is still uniform but denser

@ the precision step: the work population is the Monte-Carlo simulation
v

Margin points selection

New points added to the database are selected from work population in the margin:

@ clustered points: a good dispersion along the margin

@ instable points: points whose class are changing between iterations

o @ closest points: points close to the analytical separation

N,
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SVM & Monte-Carlo SVM Theory
SVM & Subsets SMART method
Validation Some remarks

SMART: some limits

Dependence on the probability objective

@ The size of the Monte-Carlo population depends on the failure probability
that is not a priori define

@ A crucial 1st step: the size of the first design plan depends on the failure
probability objective because the algorithm needs failure points to start

So: need a less dependent approach...

e | subset simulation |
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Subset simulations
SVM & Subsets “SMART
An illustrative example
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SVM & Monte-Carlo Subset simulations
SVM & Subsets “SMART
Validation An illustrative example

Subset simulation - The idea

[ S.K.Au and J.L.Beck, Estimation of small failure probabilities in high dimensions
by subset simulation, 2001, Prob.Eng.Mech. |

The desired probability P(Fn) = P(F) is written by using the conditional
probability theory:

Xy
Y=m
P; = P(F)

= P(F | Fe1)P(Fm-1) —=
_ = En

m FZ
= P(R)[[ P(Fi | Fim) F,

i=2

T

Ps is evaluated by estimating all factors.

Successive thresholds are automatically selected such that the evaluated
conditional probabilities are about a = 10%:
each factor can be evaluated efficiently by simulation

MART method



Subset simulations
SVM & Subsets “SMART
An illustrative example

Subset simulation steps

Subset first step
The first probability P(Fy) is evaluated by crude
Monte-Carlo

@ N simulations are generated
@ the first threshold y; is defined as to find P(F;) ~ a = 0.1

limit-state
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SVM & Monte-Carlo Subset simulations
SVM & Subsets “SMART
Validation An illustrative example

Subset simulation steps

Subset first step

The first probability P(Fy) is evaluated by crude
Monte-Carlo

@ N simulations are generated

@ the first threshold y; is defined as to find P(F;) ~ a = 0.1
4

limit-state

Subset second step

The second probability P(F3) is evaluated by
conditional simulations

@ N conditional simulations are generated by Markov Chains
from germs: points of the preceding step in Fy

@ the second threshold y; is defined as to find P(Fp) ~ «

1
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SVM & Monte-Carlo Subset simulations
SVM & Subsets “SMART
Validation An illustrative example

Subset simulation steps

Subset first step

The first probability P(Fy) is evaluated by crude
Monte-Carlo

@ N simulations are generated

@ the first threshold y; is defined as to find P(F;) ~ a = 0.1
4

limit-state

Subset second step

The second probability P(F3) is evaluated by
conditional simulations

@ N conditional simulations are generated by Markov Chains
from germs: points of the preceding step in Fy

@ the second threshold y; is defined as to find P(Fp) ~ «

|

1
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SVM & Monte-Carlo Subset simulations

SVM & Subsets 2SMART
Validation An illustrative example

Subset simulation steps

Subset first step

The first probability P(Fy) is evaluated by crude
Monte-Carlo

@ N simulations are generated

@ the first threshold y; is defined as to find P(F;) ~ a = 0.1
v

PR S limit-state

Subset second step

conditional simulations

% The second probability P(F3) is evaluated by

@ N conditional simulations are generated by Markov Chains
5 from germs: points of the preceding step in Fy

S @ the second threshold y; is defined as to find P(Fp) ~ «

|

Subset last step

The last probability P(Fp,) is evaluated by
conditional simulations

—"\é '\‘ \ @ N conditional simulations are generated by Markov Chains

@ the last threshold y,, = 0 is reached after m steps
(m depends on Ps value)
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SVM & Monte-Carlo §ubset simulations
SVM & Subsets “SMART
Validation An illustrative example

2SMART - Idea

@ Objective: to cumulate advantages of both approaches, SMART and
Subsets simulations

@ ldea: to use the learning strategy of SMART for the limit defined at
each step of the subset

@ Strategy: At each steps of subset, 2 phases:

@ determine the threshold: by direct simulation (100 points), or
regression (25 points) and simulation

@ using SMART strategy with adapted work populations (conditional
sampling by Markov Chains) for the evaluation of the failure
probability at each step
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SVM & Subsets

A short illustrative example

F. Deheeger & M. Lemaire - 10" 1IcasP

Subset simulations
“SMART
An illustrative example

X1+ X2
3401 (X — X2)? —
(X1 2) 7
Xq + X
G(X)=min{ 3+0.1(X — X))+ 1ﬁ 2

X, — Xo +3.5V2
Xo — X1 +3.5V2

X1,2 are standard Gauss variables

SVM for Efficient Subset: 2SMART method
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Subset simulations

SVM & Subsets °SMART
An illustrative example

A short illustrative example

X1+ X2

3401 (X — Xp)2 — — =

(X1 2) 7

Xq + X

G(X)=min{ 3+0.1(X —X)2+ L2

V2

X, — Xo +3.5V2
Xo — X1 +3.5V2

X1,2 are standard Gauss variables

MC  FORM SS(AB) SS(AB) 2SMART

N calls 10° 12 3000 30000 350
Pr (10-3) 222 1.3 235 244 2.21
B 285  3.00 283 281 2.85
Cov 0.02 — 0.23  0.06 0.01
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Subset simulations
SVM & Subsets “SMART
An illustrative example

A short illustrative example

3401 (X — X2)? —

G(X)=min{ 3+0.1(X3 —X)? +

X, — Xo +3.5V2
Xo — X1 +3.5V2

X1,2 are standard Gauss variables

MC  FORM SS(AB) SS(AB) 2SMART

N calls 10° 12 3000 30000 350
Pr (10-3) 222 1.3 235 244 2.21
B 285  3.00 283 281 2.85
Cov 0.02 — 0.23  0.06 0.01
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SVM & Monte-Carlo Subset simulations
SVM & Subsets “SMART
Validation An illustrative example

2SMART - Steps illustration

Second subset step )
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A non smooth example
The dimension influence
Validation A random field application

Contents

O Examples and applications
@ A non smooth performance function

@ Influence of the problem size
@ A random field application
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A non smooth example
The dimension influence
Validation A random field application

A non smooth performance function

A non linear oscillator

@ Limit-state function definition:

S Cpwl + Cswdw
G(X) — Fy — 3ke\| 7 0 < 2<a<52 - ( P*p s s) P
4¢sw3 (pCs(4C5 +02) + (3 4(3“1:;
oy — ¢ ko Lo o)
P = wy = —(w w
mp a 2P s
with: P 1
wsz\/—s (3:5((p+Cs)
ms
m 0= — _
y=— o (wp — ws)
Mp
@ Random variables definition:
Random variables pdf Mean cov.
mp Lognormal 1.5 10%
ms Lognormal 0.01 10%
kp Lognormal 1 20%
ks Lognormal 0.01 20%
7 ¢p Lognormal 0.05 40%
0.02 50%

-, (s Lognormal
r\ . NN Fs Lognormal 15 10%
i Lognormal
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SVM & Monte-Carlo
SVM & Subsets
Validation

A non smooth example
The dimension influence
A random field application

A non smooth performance function

A non linear oscillator

@ Results from various methods and various threshold:

FORM MC SS(AB) 2SMART
(100 runs) (500 runs) (50 runs)
(3.10° sim/step) (300 sim/step)
Pr Pr Pr Pr
(N calls) (N calls / Cov %) (N calls / Cov %) (N calls / Cov %)
9.70 - 102 3.71-1072 3.71- 102 3.69 - 102
(234) (27000 / 3.2) (~2x3.10° /3.2) (~ 2 %300/ 2.1)
2.19 - 1072 4.79 1073 4.78 1073 4.78 1073
(1179) (200000 / 2.9) (~ 3 x3.10° / 1.2) (~ 3 x 300/ 3.4)
2.72.1073 4.22.107% 4.23.107% 4.18-10~%
(3099) (2300000 / 3.1) (~ 4 x 3.10° / 1.9) (~ 4 x 300/ 5.6)

do not conv.

—\x

. do not conv.
.

4.42.107°
(=5 x 3.10° / 2.5)

3.78 107
(~ 7 x 3.10° / 4.0)

4.42.107°
(~ 5 x 300/ 6.8)

3.66 - 107
(A 7 x 300/ 9.6)
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SVM & Monte-Carlo A non smooth example
SVM & Subs The dimension influence
Validation A random field application

Influence of the number of random variables

[ R.Rackwitz, Reliability analysis - a review and some perspectives, 2001, Structural Safety |

@ Test case evaluated for 3 dimensions: 40, 100 and 250

Dimension 40 100 250

P (1073) 1.98 1.73 1.59

SS(AB) 2.4% 2.3% 2.4%
10° calls by step 10 calls by step 10 calls by step

SS(AB) 22% 7% 1%
1243 calls by step 2012 calls by step 3569 calls by step

ZSMART 2.8% 2.2% 2.6%
1243 calls by step 2012 calls by step 3569 calls by step

0.99 1.01 1.01

Coefficient of variation and error values are calculated on the basis of 20 runs.

Some remarks

@ There is no biais on results obtained by the °SMART method, even in

large dimension.

N —

@ Coefficients of variation obtained by the 2SMART approach using about

2000 limit-state calls require 10° limit-state calls by subset simulation.
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A non smooth example
The dimension influence
Validation A random field application

A random field application

8 holes plate with random Young modulus

[ P-L.Liu and A. Der Kiureghian, Optimization algorithms for structural reliability analysis,
1986, Tech. Report, University of California, Berkeley |

[ B.Sudret and A. Der Kiureghian, Stochastic Finite Element Methods and Reliability -
A State-of-the-Art Report, 2000, Tech. Report, University of California, Berkeley |

@ The limit-state definition:
G(X) = Olimit — maX(UVonMises)
@ Graphical representation of the structure:

P =100MPa

100 mm

. 200 mm
@ Random variables:

20 random variables are used to defined the Young modulus of the plate

y by the EOLE method.

. ‘ . Difficulties are due to multiple design points, dimension and coupled J

procedure (FE model)
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A non smooth example

The dimension influence

Validation A random field application

A random field application

A pecision about random variables

@ Graphical representation of the signification of each random variable into
the Young modulus of the plate:
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A non smooth example
The dimension influence
Validation A random field application

A random field application
Reliability results

0.06
MC on limit
Confidence interval — inf

o e Confidence interval - sup
o — .~ MC on both margin sides
o -
o £ ool

3
[ 2

£

0.031

14

2
" 2
@l Y 002
fa0 N -
- N
o 0017 - - =

M . 15 20 25 30 35
Some probable failure points terations

A convergence index

FORM _ MultiFORM _ SS(AB)  SS(AB)  °SMART
N calls 200 1000 2000 20000 600
Pr(1072) 037 0.37 1.44 1.43 1.38

W B 2.67 2.67 2.18 2.19 2.21
i
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Conclusion

Important points
@ Classification allows a serious reduction of limit-state calls.
@ SVM is flexible respect to limit-state form, even for system approach...

@ Adaptive approach: the number of constructed database points is more or
less flexible...

@ We dispose, with 2SMART, of a tool for solving applications involving
significant models of industrials products.

/s

- .
=
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